Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation for Chemo-Mechanical Actuation Using Biological Transport Mechanisms

[+] Author Affiliations
Vishnu Baba Sundaresan, Donald J. Leo

Virginia Polytechnic Institute and State University

Paper No. IMECE2005-81366, pp. 285-293; 9 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4210-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of bio-fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. Calculations for controlled actuation of an active material inspired by biological transport mechanism demonstrated the feasibility of developing such a material with actuation energy densities on the order of 100kJ/m3 by Sundaresan et. al [2004]. The mathematical model for a simplified proof of concept actuator referred to as micro hydraulic actuator uses ion transporters extracted from plants reconstituted on a synthetic bilayer lipid membrane (BLM). Thermodynamic model of the concept actuator discussed in Sundaresan et. al [2005] predicted the ability to develop 5% normalized deformation in thickness of the micro-hydraulic actuator. Our experimental demonstration of controlled fluid transport through AtSUT4 reconstituted on a 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoethanolamine (POPE) BLM on lead silicate glass plate having an array of 50 μm holes driven by proton gradient is discussed here.

Copyright © 2005 by ASME
Topics: Mechanisms



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In