0

Full Content is available to subscribers

Subscribe/Learn More  >

Improving Fracture Toughness of Brittle Matrix Composites Using End-Shaped Ductile Fibers: The Effects of Adhesion and Matrix Shrinkage

[+] Author Affiliations
Robert C. Wetherhold, Renee M. Bagwell

University of New York at Buffalo, Buffalo, NY

Paper No. IMECE2003-42967, pp. 137-141; 5 pages
doi:10.1115/IMECE2003-42967
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Materials
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Materials Division
  • ISBN: 0-7918-3719-X | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Ductile fibers are added to brittle matrix composites to increase the fracture toughness. To further improve fracture toughness, end shaped ductile fibers are added to act as anchors to utilize more of the fibers’ plasticity. Previous research focused on optimizing the volume of the shaped end for a given end shape family. Results indicate that for a given end shape family there is an optimum volume; above or below this volume results in a lower fracture toughness contribution. This research investigates two additional factors, adhesion of the matrix to the fiber and matrix shrinkage, and determines their effects on the fracture toughening of brittle matrix composites. The fiber was an annealed copper and the matrices used were a low shrinkage epoxy, a high shrinkage epoxy, and polyester. Results indicate that controlling the surface chemistry of the fiber can give an additional degree of freedom to the utilization of the fiber plasticity, although the importance of this control depends on the particular system. The fiber surface chemistry affects the bond strength and the adhesion; if the fiber cannot debond from the matrix, then shaping the end does not permit use of the plastic potential. Depending on the system, the adhesion and bond strength of the matrix to the fiber significantly affects the amount of fiber plasticity utilized. To determine the effects of friction and matrix shrinkage on the utilization of the fiber plasticity, release agent was applied to the end shaped fibers to reduce the adhesion, bond strength, and friction during pull out. Results indicate that frictional work and adhesion has a large impact on the utilization of the fiber plasticity; with release agent, the end shaped fiber utilizes little of the fiber plasticity. Furthermore, this indicates that for the matrices investigated, matrix shrinkage has a minor influence on the utilization of the fiber plasticity.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In