0

Full Content is available to subscribers

Subscribe/Learn More  >

Evolution of Upstream Propagating Shock Waves From a Transonic Compressor Rotor

[+] Author Affiliations
Anil Prasad

Pratt and Whitney Aircraft Engines, East Hartford, CT

Paper No. GT2002-30356, pp. 299-309; 11 pages
doi:10.1115/GT2002-30356
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3610-X | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

The evolution of upstream propagating shock waves from the isolated transonic compressor designated NASA Rotor-35 is examined numerically. Results from the numerical simulations are compared with those from a semi-analytical two-dimensional model based on the nonlinear acoustic interaction of shock waves in the axial–tangential plane upstream of the rotor. The evolution determined from a two-dimensional viscous computational solution is found to agree well with the semi-analytical prediction and confirms that shock wave evolution is a primarily inviscid phenomenon. Radial variations are found to increase the rate of decay of the shock wave amplitude in comparison to the prediction from the semi-analytical two-dimensional model. The velocity field from the three-dimensional viscous solution compares well with experimental measurements, indicating that the initial shock strength and shock wave evolution immediately upstream of the rotor blade leading edge are accurately captured. The upstream-propagating shock system is found responsible for nearly 20% of the total loss attributable to the rotor, and is consistent with earlier transonic airfoil cascade studies. The axial decay rate of the upstream induced circumferential static pressure distortion is found to be an order of magnitude slower at spanwise locations with supersonic relative inlet Mach numbers than those at which it is subsonic. As a consequence of this slower decay rate, it is found that the axial gap to the upstream stator would need to be about twice that used for subsonic blade sections.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In