Full Content is available to subscribers

Subscribe/Learn More  >

Topology Optimization of Carbon Nanotube Reinforced Damping Layers

[+] Author Affiliations
Arnold Lumsdaine, Mohan Damu

University of Tennessee

Paper No. IMECE2005-80569, pp. 199-207; 9 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4210-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Topology optimization has been successfully used for improving vibration damping in constrained layer damping structures with viscoelastic materials. Reinforcing carbon nanotubes in a polymer matrix greatly influences the mechanical properties of the polymer. Such nanotube-reinforced polymers (NRP) can be used to further enhance the damping properties of the constrained layer structures. The inclusion of nanotubes into a polymer matrix provides a new design variable in the topology optimization studies on such structures. In this work, the topology optimization of structures using such NRP as the damping material is performed. The resulting structures show a phenomenal improvement in damping. Moreover, a more efficient method is used for the optimization process.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In