Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of the Interaction of Labyrinth Seal Leakage Flow and Main Flow in an Axial Turbine

[+] Author Affiliations
Jan E. Anker, Jürgen F. Mayer

University of Stuttgart, Stuttgart, Germany

Paper No. GT2002-30348, pp. 217-224; 8 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3610-X | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


This paper presents the simulation of the flow in a 1.5 stage low-speed axial turbine with shrouded rotor blades and focuses on the interaction of the labyrinth seal leakage flow with the main flow. The presented results were obtained using the Navier-Stokes code ITSM3D developed at University of Stuttgart. A comparison of the computational results with experimental data of this test case gained at Ruhr-Universität Bochum verifies that the flow solver is capable of reproducing the leakage flow effects to a sufficient extent. The computational results are used to examine the influence of the leakage flow on the flow field of the turbine. By varying the clearance height of the labyrinth in the simulations, the impact of the re-entering leakage flow on the main flow is studied. As demonstrated in this paper, leakage flow not only introduces mixing losses but can also dominate the secondary flow and induce severe losses. In agreement with the experimental data the computational results show that at realistic clearance heights the leakage flow gives rise to negative incidence over a considerable part of the downstream stator which causes the flow to separate.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In