Full Content is available to subscribers

Subscribe/Learn More  >

Analytical and Numerical Predictions of Thermoelastic Properties of Carbon Single-Walled Nanotubes

[+] Author Affiliations
Vinod P. Veedu, Davood Askari, Mehrdad N. Ghasemi-Nejhad

University of Hawaii at Manoa

Paper No. IMECE2005-80256, pp. 155-159; 5 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4210-X | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


The objective of this paper is to develop constitutive models to predict thermoelastic properties of carbon single-walled nanotubes using analytical, asymptotic homogenization, and numerical, finite element analysis, methods. In our approach, the graphene sheet is considered as a non-homogeneous network shell layer which has zero material properties in the regions of perforation and whose effective properties are estimated from the solution of the appropriate local problems set on the unit cell of the layer. Our goal is to derive working formulas for the entire complex of the thermoelastic properties of the periodic network. The effective thermoelastic properties of carbon nanotubes were predicted using asymptotic homogenization method. Moreover, in order to verify the results of analytical predictions, a detailed finite element analysis is followed to investigate the thermoelastic response of the unit cells and the entire graphene sheet network.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In