0

Full Content is available to subscribers

Subscribe/Learn More  >

Reference Stress Approach for Failure Strength Estimates of a Pipe With Local Wall Thinning

[+] Author Affiliations
Yun-Jae Kim

Korea University, Seoul, Korea

Young-Jin Kim

Sungkyunkwan University, Suwon, Korea

Paper No. PVP2005-71551, pp. 753-759; 7 pages
doi:10.1115/PVP2005-71551
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4191-X | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

This paper proposes a method based on the reference stress a approach to estimate residual strength of a pipe with local wall thinning. The method is based on the equivalent stress averaged over the minimum ligament in the locally wall thinned region. Inspired by the reference stress method for approximate creep stress analysis, approximate estimation equations for the equivalent stress in the minimum ligament are proposed, which are then calibrated using detailed elastic-plastic 3-D FE analysis. The resulting estimation equations are found to be insensitive not only to pipe and defect geometries but also to material. Comparison of failure loads, predicted according to the proposed method, with published test data for corroded pipes shows excellent agreement.

Copyright © 2005 by ASME
Topics: Stress , Pipes , Failure

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In