Full Content is available to subscribers

Subscribe/Learn More  >

Effect of High-Pressure Hydrogen Gas on Fracture of Austenitic Steels

[+] Author Affiliations
C. San Marchi, D. K. Balch, B. P. Somerday

Sandia National Laboratories, Livermore, CA

Paper No. PVP2005-71392, pp. 483-491; 9 pages
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4191-X | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME


Applications requiring the containment and transport of hydrogen gas at pressures greater than 70 MPa are anticipated in the evolving hydrogen economy infrastructure. Since hydrogen is known to alter the mechanical properties of materials, data are needed to guide the selection of materials for structural components. The objective of this study is to characterize hydrogen-assisted fracture in two austenitic steels, 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5), as well as explore the role of yield strength and small concentrations of ferrite on hydrogen-assisted fracture. The testing methodology involves exposure of uniaxial tensile specimens to high-pressure hydrogen gas in order to precharge the specimens with hydrogen, then subsequently testing the specimens to measure strength and ductility. In all cases, the alloys remained ductile despite precharging to hydrogen concentrations >1 at%, this is substantiated by reduction in area of >50% and fracture surfaces dominated by microvoid coalescence. Low concentrations of ferrite and moderate changes in yield strength did not affect the hydrogen-assisted fracture of 21-6-9 and 22-13-5 respectively.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In