0

Full Content is available to subscribers

Subscribe/Learn More  >

Predicting Speed of Crack Running in Functionally Graded Material

[+] Author Affiliations
Michihiko Nakagaki, Ryosuke Matsumoto

Kyushu Institute of Technology, Iizuka-City, Fukuoka, Japan

Paper No. PVP2005-71564, pp. 445-449; 5 pages
doi:10.1115/PVP2005-71564
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4191-X | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

A theoretical and computational methodology for the analysis of the functionally graded material (FGM) is introduced, and its application is made to the problem of a dynamically propagating crack running transversely in the FGM, where the intensity of the estimated crack-tip severity is managed to keep in valance with the graded material toughness in the FGM during the propagation. To detect the crack-tip severity, an integral fracture parameter, T*, is used. The crack is propagated so that the value of T* is equated to the prescribed varying critical values of T* for the graded material. Emphasis is placed on the use of a fuzzy inference technique in order to control the crack speed, which is deduced from a few T* values immediately preceding the current crack position. As to describing the constitutive law for the FGM, micro-spherical particles of arbitrary size in mesoscale are considered to be randomly dispersed in the matrix medium. By assuming that the volume fraction of the inclusion is continuously varied from 0 to 100 percent in the material, the grading is modeled. For modeling the constitutive law for the FGM composite media of thermo-elastoplasticity, a closed form SCC-LRM constitutive model describing the nonlinear material mechanics of the particle-dispersed medium is used. The model is based on the self-consistent scheme and uses Eshelby’s equivalent inclusion method. Unprecedented analytical results of predicting the crack speed of a crack running transversely in the FGM plate are obtained. In some cases of material grading, apparent crack arresting is observed as the crack runs into the metal rich area of the FGM.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In