Full Content is available to subscribers

Subscribe/Learn More  >

Warm Pre-Stress Effect Measured at Irradiated RPV Weld Material

[+] Author Affiliations
Elisabeth Keim, Reinhard Langer, Hilmar Schnabel

Framatome ANP GmbH, Erlangen, Germany

Reinhard Bartsch

Kernkraftwerk Obrigheim GmbH

Paper No. PVP2005-71196, pp. 267-271; 5 pages
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4191-X | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME


The recently initiated German project CARISMA (C rack Initiation and Ar rest of I rradiated S teel Ma terials) will create a data base on pre-irradiated original materials of the four generations of German nuclear pressurized water reactors, which allows the examination of the consequences if the Master Curve instead of the RTNDT concept is applied. Several original materials of the four generations of German nuclear power plants (typical for KWO, KKS - Biblis A, Biblis B, KKU - KKG, KWG, KKP2, KBR - KKE, KK12, GKN2) will be investigated. They have been irradiated in six large scale irradiation capsules in a German research reactor (the VAK plant) at corresponding plant conditions. The capsules contain regular tensile and Charpy impact specimens as well as Pellini and fracture toughness wedge opening load specimens up to a specimen thickness of 100 mm. The first fracture toughness tests have been performed on a weld metal NiCrMo1 UP(mod.)/LW320, LW340 (1. generation, lower bound of the weld materials)—with a fluence Φ = 2,12E19 cm−2 (E > 1 MeV). This weld has a Cu-content of 0.22 wgt.% and it was therefore supposed to show a large transition temperature shift. Some fracture toughness tests in the irradiated material condition were already available and during this project four 100 mm thick wedge opening load (WOL) specimens were tested. At one of the specimens brittle failure could not be achieved during the test, because the load capacity of the test machine was exceeded. Therefore the specimen was loaded by a load-unload-cool-fracture load path to demonstrate the warm pre-stress effect of this highly irradiated specimen. At the final fracture of the specimen at a lower temperature, the failure load was significantly higher than the original one (factor 3 higher), which clearly indicates that the benefit of warm pre-stressing will not be eroded with irradiation.

Copyright © 2005 by ASME
Topics: Stress



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In