0

Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical Underpinning of the Constraint Effect Between Deeply Cracked C(T)- and SEN(B) Specimens

[+] Author Affiliations
Michael Ludwig

Framatome ANP GmbH, Erlangen, Germany

Paper No. PVP2005-71181, pp. 261-266; 6 pages
doi:10.1115/PVP2005-71181
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4191-X | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

In the standard test method for the determination of the reference temperature T0 in the transition range, ASTM E 1921-03 [1], the remark is given that different specimen types could lead to discrepancies in the calculated T0 values. Especially C(T) and SEN(B) specimens indicate by experimental evidence that a 10 °C to 15 °C difference in T0 has been observed. In the course of the European research project VOCALIST [2] a ferritic RPV steel has been investigated by conducting numerous fracture toughness experiments as well as intensive numerical studies. A local approach model based on the Weibull stress has been developed and calibrated for this material [3]. For the calculation of the constraint effect between SEN(B) and C(T) specimens with a crack to ligament ratio of approx. 0.5 the model has been applied to predict the constraint effects on fracture toughness and the resulting theoretical difference in the reference temperature T0 . For this purpose the according specimens have been calculated by several finite element models and a reference solution in the small scale yielding space allowed for the calculation of the “constraint free” reference transition temperature T0 . By means of theoretical constraint functions derived from the Weibull stress model, the difference for each specimen compared to the reference solution could be calculated. From the results a theoretical difference of ΔT0 = 10°C between SEN(B) (lower value) and C(T) specimens (higher value) caused by the different crack tip constraint has been obtained. This value confirms the experimental observations.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In