Full Content is available to subscribers

Subscribe/Learn More  >

Overload Fracture of Hydrided Region at Simulated Blunt Flaws in Zr-2.5Nb Pressure Tube Material

[+] Author Affiliations
Jun Cui, Gordon K. Shek

Kinectrics, Inc., Toronto, Ontario, Canada

Paper No. PVP2005-71273, pp. 129-143; 15 pages
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4191-X | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME


Flaws in Zr-2.5Nb alloy pressure tubes in CANDU nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth of the hydrided region and fracture of the hydrided region at the flaw-tip. An overload occurs when the hydrided region at a flaw is loaded to a stress higher than that at which this region is formed. Flaw disposition requires justification that the hydrided region overload from normal reactor operating and transient loading conditions will not fracture the hydrided region, and will not initiate DHC. Some preliminary test results on the effect of hydrided region overload on DHC initiation were presented in Reference [1]. In the present work, several series of more systematically designed monotonically increasing load experiments were performed on specimens prepared from an unirradiated pressure tube with hydrided region formed at flaws with a root radius of 0.1 or 0.3 mm under different hydride formation stresses and thermal histories. Crack initiation in the overload tests was detected by the acoustic emission technique. Test results indicate that the resistance to overload fracture is dependent on a variety of parameters including hydride formation stress, thermal history, flaw geometry and hydrogen concentration.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In