0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Fatigue Evaluation Method Based on Power Spectrum Density Functions Against Fluid Temperature Fluctuation

[+] Author Affiliations
Naoto Kasahara, Nobuyuki Kimura, Hideki Kamide

Japan Nuclear Cycle Development Institute, Oarai, Ibaraki, Japan

Paper No. PVP2005-71307, pp. 503-509; 7 pages
doi:10.1115/PVP2005-71307
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4188-X | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

Fluid temperature fluctuates at an incomplete mixing area of high and low temperature fluids in nuclear components. It induces random variations of local temperature gradients in structural walls, which lead to cyclic thermal stresses. When thermal stresses and cycle numbers are large, there are possibilities of fatigue crack initiations and propagations. It is recognized that there are attenuation factors depending on fluctuation frequency in the transfer process from fluid temperature to thermal stresses. If a frequency of fluctuation is very low, whole temperature of the wall can respond to fluid temperature, because thermal diffusivity homogenizes structural temperature. Therefore, low frequency fluctuations do not induce large thermal stress due to temperature gradients in structures. On the other hand, a wall surface cannot respond to very high frequency fluctuation, since a structure has a time constant of thermal response. High frequency fluctuations do not lead to large thermal stress. Paying attention to its attenuation mechanism, Japan Nuclear Cycle Development Institute (JNC) has proposed a fatigue evaluation method related to frequencies. The first step of this method is an evaluation of Power Spectrum Density (PSD) on fluid, from design specifications such as flow rates, diameters of pipes and materials. In the next step, the PSD of fluid is converted to PSD of thermal stress by the frequency transfer function. Finally, the PSD of thermal stress is transformed to time history of stress under an assumption of random phase. Fatigue damage factors can be evaluated from stress ranges and cycles obtained by the rain flow wave count method. Proposed method was applied to evaluate fatigue damage of piping junction model tests conducted at Oarai Engineering Center. Through comparison with direct evaluation from measurements and predictions by conventional methods, the accuracy of the proposed method was validated.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In