Full Content is available to subscribers

Subscribe/Learn More  >

Test Results: Vehicle Responses to Simulated Drag Caused by Front Tire Tread Detachment — The Effect of Scrub Radius and Speed

[+] Author Affiliations
Mark W. Arndt

Transportation Safety Technologies, Inc., Phoenix, AZ

Stephen M. Arndt

Safety Engineering and Forensic Analysis, Phoenix, AZ

Paper No. IMECE2018-87609, pp. V013T05A016; 8 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 13: Design, Reliability, Safety, and Risk
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5218-7
  • Copyright © 2018 by ASME


The effects of reduced kingpin offset distance at the ground (scrub radius) and speed were evaluated under controlled test conditions simulating front tire tread detachment drag. While driving in a straight line at target speeds of 50, 60, or 70 mph with the steering wheel locked, the drag of a tire tread detachment was simulated by applying the left front brake with a pneumatic actuator. The test vehicle was a 2001 dual rear wheel four-wheel-drive Ford F350 pickup truck with an 11,500 lb. GVWR. The scrub radius was tested at the OEM distance of 125 mm (Δ = 0) and at reduced distances of 49 mm (Δ = −76) and 11 mm (Δ = −114). The average steady state responses at 70 mph with the OEM scrub radius were: steering torque = −24.5 in-lb; slip angle = −3.8 deg; lateral acceleration = −0.47 g; yaw rate = −8.9 deg/sec; lateral displacement after 0.75 seconds = 3.1 ft and lateral displacement after 1.5 seconds = 13.1 ft. At the OEM scrub radius, responses that increased linearly with speed included: slip angle (R2 = 0.84); lateral acceleration (R2 = 0.93); yaw rate (R2 = 0.73) and lateral displacement (R2 = 0.59 and R2 = 0.87, respectively). At the OEM scrub radius, steer torque decreased linearly with speed (R2 = 0.76) and longitudinal acceleration had no linear relationship with speed (R2 = 0.09). At 60 mph and 70 mph for both scrub radius reductions, statistically significant decreases (CI ≥ 95%) occurred in average responses of steer torque, slip angle, lateral acceleration, yaw rate, and lateral displacement. At 50 mph, reducing the OEM scrub radius to 11 mm resulted in statistically significant decreases (CI ≥ 95%) in average responses of steer torque, lateral acceleration, yaw rate and lateral displacement. At 50 mph the average slip angle response decreased (CI = 87%) when the OEM scrub radius was reduced to 11 mm.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In