0

Full Content is available to subscribers

Subscribe/Learn More  >

Pedestrian Collision Responses Using Legform Impactor Subsystem and Full-Sized Pedestrian Model on Different Workbenches

[+] Author Affiliations
Obaidur Rahman Mohammed, Shabbir Memon, Hamid M. Lankarani

Wichita State University, Wichita, KS

Paper No. IMECE2018-87904, pp. V013T05A013; 7 pages
doi:10.1115/IMECE2018-87904
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 13: Design, Reliability, Safety, and Risk
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5218-7
  • Copyright © 2018 by ASME

abstract

Car-pedestrian collision fatalities have been reported for a significant number of roadside accidents around the world. In order to reduce the lower extremity injuries in car-pedestrian collisions, it is important to determine the impact forces on the pedestrian and conditions that the car frontal side impacts on the lower extremities of the pedestrian. The Working Group 17 (WG17) of the European Enhanced Vehicle-safety Committee (EEVC) has developed a legform subsystem impactor and procedure for assessing pedestrian collisions and potential injuries. This research describes a methodology for the evaluation of the legform impactor kinematics after a collision utilizing finite element (FE) models of the legform and cars and comparing the simulation results with the ones from a multi-body legform model as well as a 50th percentile male human pedestrian model responses.

Two approaches are carried out in the process. First, the collision strike simulations with the FE model using an FE lower legform is considered and validated against the EVVC/WG17 regulation criteria. Secondly, the collision strike simulations with a multi-body legform and an ellipsoidal multi-body car model are conducted to compare the responses from the FE model and the multi-body model. The results from the impact simulations of FE legform and the multi-body legform are also compared with the ones from a full-size pedestrian model at constant speeds. All the models and simulation in this are using the LS-DYNA nonlinear FE code, while the multibody legform, car, and full-sized pedestrian models are developed and evaluated in MADYMO.

The results from this study demonstrate the differences between the subsystem legform and the full-size pedestrian responses as well as suitability of various FE and multibody models related to pedestrian impact responses. Different workbenches comparisons with finite model and ellipsoidal models gives more better correlation to this research.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In