Full Content is available to subscribers

Subscribe/Learn More  >

Dexterous Hybrid Robotics for High Precision Applications

[+] Author Affiliations
Nolan Jackson, Mitchell Crowther, Minchul Shin

Georgia Southern University, Statesboro, GA

Paper No. IMECE2018-86856, pp. V012T11A028; 8 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 12: Materials: Genetics to Structures
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5217-0
  • Copyright © 2018 by ASME


Robotic grippers are useful in designing prosthetics and manufacturing. “Robotic hands often fall into two categories: simple and highly specialized grippers often used in manufacturing, and general and highly complicated grippers designed for a variety of tasks.” Ramond et al. [1] Within these two categories there are two main categories of research. These are hard structure and soft structure robotics. Hard structure robotics rely on a mechanical design with a motor or actuator to move a hard-linked part. Soft structure uses a mechanical design, soft material and a pneumatic pump to create the desired movement. The soft material is designed in a way that when it is pumped full of a fluid (i.e. air) it has a specific deformation. Hard robotics have an advantage in their ability to output a large force, but soft robotics have increased degrees of freedom. Dexterity (readiness and grace in physical movement) is another advantage over hard robotics. This project focuses on the process of designing actuators that can feasibly be used for devices falling into either of the two main categories of robotics. Such an actuator could be effectively implemented toward simple applications such as manufacturing-style gripping devices to advanced applications found in modern human prosthetics or areas where high dexterity combined with a delicate touch are required. The simulations show that the designs created work within a pressure range of 0.5 PSI to 1 PSI. This low pressure does not output a lot of force. The high dexterity and small air compressors needed make it a good design for use in areas like manufacturing or medical. If a stronger material was applied to these designs allowing the designs to handle higher pressures these designs could output much higher forces. This increase would make the designs more usable in areas like prosthetics and advanced robotics.

Copyright © 2018 by ASME
Topics: Robotics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In