0

Full Content is available to subscribers

Subscribe/Learn More  >

A Three-Dimensional Nested Reinforcing Mesh in Elastomers for Crashworthy Applications

[+] Author Affiliations
David J. Traina, Thomas C. Ekstrom, Owen F. Van Valkenburgh, Jean-Paul R. Wallis, David S. Schulman, Emily R. Mather, Nathan K. Yasuda, Frank J. Shih

Seattle University, Seattle, WA

Paper No. IMECE2018-88471, pp. V012T11A024; 6 pages
doi:10.1115/IMECE2018-88471
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 12: Materials: Genetics to Structures
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5217-0
  • Copyright © 2018 by ASME

abstract

The advent of additive manufacturing allows for the design of complex 3D geometries that would otherwise be difficult to manufacture using traditional processes. Stereolithographic printing of geometrically reinforced structures gives promise for tunable energy-absorbing composite materials for impact applications. These materials may be suitable for applications in personal sport protection equipment such as knee-pads or helmets. The flexible nature of additive manufacturing can be easily scaled and modified to serve a variety of impact loading applications. In the present study, a three-dimensional nested array of ridged polymeric mesh with tiered high-temperature UV-cured polymer were embedded in a polyurethane matrix to form a new class of functional composite materials designed for multi-use low velocity impact events, and a single-use high velocity or high force impact event. The reinforcements were designed to absorb impact energy by the sequential bending, bucking, and failure of the layers of nested reinforcing members. The energy absorption capacity is further enhanced by the connective elastomer matrix which serves to retain the fractured mesh structure after initial breakage. The peak load is maintained at a relatively modest level while maximizing absorbed energy. Quasi-static loading tests were conducted to measure the peak load, total energy absorbing capability of the material. The energy absorption capability is measured using force-displacement plots and multiple interactions of material combination of reinforcement ring arrays. Tests with and without elastomer matrix, were conducted to understand peak load minimization and energy absorption character of the material.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In