0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Induced Delamination During End-Milling of Natural Fiber Reinforced Composites: A Statistical Analysis

[+] Author Affiliations
Khalid I. Alzebdeh, Mahmoud M. A. Nassar, Nasr Al-Hinai

Sultan Qaboos University, Al Khod, Oman

Paper No. IMECE2018-86978, pp. V012T11A019; 8 pages
doi:10.1115/IMECE2018-86978
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 12: Materials: Genetics to Structures
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5217-0
  • Copyright © 2018 by ASME

abstract

The use of natural fiber reinforced composites has emerged as an advantageous option in many industrial applications. Generally, composites are manufactured in net or near-net shape, but under specific design specifications, secondary manufacturing processes such as drilling, milling and turning become a requirement. In this context, current paper presents an experimental study that investigates the machinability of newly developed natural fiber composites under conventional end-milling. Two types of bio-composites; date palm fronds reinforced polypropylene (DPF/PP) and pine needles reinforced polypropylene composite (PN/PP) were developed and physically tested in order to optimize their mechanical strength. Then, machinability of such class of bio-composites is statistically analyzed using Design of Experiment method. Statistical modeling including response surface plots are utilized to analyze the combined effect of input processing parameters (feed rate, axial depth, spindle speed) on the induced delamination during end-milling. It is shown that feed rate is the most dominant factors in DPF/PP milling, and axial depth of cut is the most significant factor on PN/PP milling. Results are also compared with those of milled neat polypropylene, which confirm that delamination of machined bio-composites can be improved over the neat polypropylene matrix. This qualifies the developed bio-composites to be used in industrial applications in which machining is required.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In