Full Content is available to subscribers

Subscribe/Learn More  >

Application of a Resonant Metamaterial Line Array in Ultrasound Compressive Imaging

[+] Author Affiliations
Ashkan Ghanbarzadeh-Dagheyan, Ali Molaei, Juan Heredia-Juesas, Jose Angel Martinez-Lorenzo

Northeastern University, Boston, MA

Paper No. IMECE2018-88011, pp. V011T01A026; 11 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 11: Acoustics, Vibration, and Phononics
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5216-3
  • Copyright © 2018 by ASME


Acoustic metamaterials have been proposed for numerous applications including subwavelength imaging, impedance matching, and lensing. Yet, their application in compressive sensing and imaging has not been fully investigated. When metamaterials are used as resonators at certain frequencies, they can generate random radiation patterns in the transmitted and received waves to and from a target. Compressive sensing favors such randomness inasmuch as it can increase incoherence by decreasing the amount of mutual information between any two different measurements. This study aims at assessing whether the use of resonating metamaterial unit cells in a single-layered array between a number of ultrasound transceivers and targets can improve the sensing capacity, point-spread function of the sensing array (their beam focusing ability), and imaging performance in pointlike target detection. The theoretical results are promising and can open the way for more efficient metamaterial designs with the aim of enhancing ultrasound imaging with lower number of transceivers compared to the regular systems.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In