0

Full Content is available to subscribers

Subscribe/Learn More  >

Deep Convolutional Neural Network for Early Disk Crack Diagnosis Under Variable Speed

[+] Author Affiliations
Ruonan Liu, Ruqiang Yan, Meng Ma, Xuefeng Chen

Xi'an Jiaotong University, Xi'an, China

Paper No. IMECE2018-87247, pp. V011T01A021; 7 pages
doi:10.1115/IMECE2018-87247
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 11: Acoustics, Vibration, and Phononics
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5216-3
  • Copyright © 2018 by ASME

abstract

Aero engine is essentially the heart of an airplane. However, the high temperature and high pressure working environment of the aero engine can easily lead to fatigue cracks in turbine disks, and result in serious accidents. Therefore, early disk crack diagnosis is very important to guarantee safe flight of the airplane and reduce its maintenance cost, which, however, is challenging due to the difficulty in building a complex physical model under variable operating speeds. To tackle this problem, a novel deep convolutional neural network (CNN)-based method is proposed for early disk crack diagnosis. CNN, as one of the deep learning structures, can learn deep-seated features directly and automatically from the raw data without the need of physical model or prior knowledge. It shows the potential to deal with the challenge of early disk crack diagnosis. Since the proposed diagnosis method is signal-level, the collected vibration signals can be input into the CNN architecture directly without the need of feature extractor. In this paper, the vibration signals at both the beginning and the end of the test are used for training the CNN model, then the rest signals are input into the trained model as test data to diagnose when the incipient disk crack is generated. Experimental study conducted on the fatigue test of a real turbine disk has proved the effectiveness and robustness of the proposed method for early disk crack diagnosis. Meanwhile, comparison study with some state-of-the-art methods is also performed, and further highlights the superiority of the proposed method.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In