0

Full Content is available to subscribers

Subscribe/Learn More  >

Operational Modal Analysis and Damage Identification of Structures Undergoing Random Vibration Using a Continuously Scanning Laser Doppler Vibrometer System

[+] Author Affiliations
Da-Ming Chen, W. D. Zhu

University of Maryland, Baltimore County, Baltimore, MD

Y. F. Xu

University of Cincinnati, Cincinnati, OH

Paper No. IMECE2018-88058, pp. V011T01A018; 21 pages
doi:10.1115/IMECE2018-88058
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 11: Acoustics, Vibration, and Phononics
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5216-3
  • Copyright © 2018 by ASME

abstract

A continuously scanning laser Doppler vibrometer (CSLDV) system is capable of efficient and spatially dense vibration measurements by sweeping its laser spot along a scan path assigned on a structure. This paper proposes a new operational modal analysis (OMA) method based on a data processing method for CSLDV measurements of a structure, called the lifting method, under white-noise excitation and applies a baseline-free method to identify structural damage using estimated mode shapes from the OMA method. The lifting method enables transformation of raw CSLDV measurements into measurements at individual virtual measurement points, as if the latter were made by use of an ordinary scanning laser Doppler vibrometer in a step-wise manner. It is shown that a correlation function with non-negative time delays between lifted CSLDV measurements of two virtual measurement points on a structure under white-noise excitation and its power spectrum contain modal parameters of the structure, i.e., natural frequencies, modal damping ratios and mode shapes. The modal parameters can be estimated by using a standard OMA algorithm. A major advantage of the proposed OMA method is that curvature mode shapes associated with mode shapes estimated by the method can reflect local anomaly caused by small-sized structural damage, while those estimated by other existing OMA methods that use CSLDV measurements cannot. Numerical and experimental investigations are conducted to study the OMA method and baseline-free structural damage identification method. In the experimental investigation, effects of the scan frequency of a CSLDV system on the two methods were studied. It is shown in both the numerical and experimental investigations that modal parameters can be accurately estimated by the OMA method and structural damage can be successfully identified in neighborhoods with consistently high values of curvature damage indices.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In