Full Content is available to subscribers

Subscribe/Learn More  >

Design of Acoustic Metamaterials Using Gradient Based Optimization

[+] Author Affiliations
Feruza A. Amirkulova

San Jose State University, San Jose, CA

Andrew N. Norris

Rutgers University, Piscataway, NJ

Paper No. IMECE2018-88254, pp. V011T01A015; 9 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 11: Acoustics, Vibration, and Phononics
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5216-3
  • Copyright © 2018 by ASME


We derive formulas for the gradients of the total scattering cross section (TSCS) with respect to positions of a set of cylindrical scatterers. Providing the analytic form of gradients enhances modeling capability when combined with optimization algorithms and parallel computing. This results in reducing number of function calls and time needed to converge, and improving solution accuracy for large scale optimization problems especially at high frequencies and with a large number of scatterers. As application of the method we design acoustic metamaterial structure based on a gradient-based minimization of TSCS for a set of cylindrical obstacles by incrementally re-positioning them so that they eventually act as an effective cloaking device. The method is illustrated through examples for clusters of hard cylinders in water. Computations are performed on Matlab using parallel optimization algorithms and a multistart optimization solver, and supplying the gradient of TSCS.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In