0

Full Content is available to subscribers

Subscribe/Learn More  >

Area-Arrayed Graphene Nano-Ribbon-Base Strain Sensor

[+] Author Affiliations
Ryohei Nakagawa, Zhi Wang, Ken Suzuki

Tohoku University, Sendai, Japan

Paper No. IMECE2018-87277, pp. V010T13A008; 6 pages
doi:10.1115/IMECE2018-87277
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5215-6
  • Copyright © 2018 by ASME

abstract

Health monitoring devices using a strain sensor, which shows high sensitivity and large deformability, are strongly demanded due to further aging of society with fewer children. Conventional strain sensors, such as metallic strain gauges and semiconductive strain sensors, however, aren’t applicable to health monitoring because of their low sensitivity and deformability. In this study, fundamental design of area-arrayed graphene nano-ribbon (GNR) strain senor was proposed in order to fabricate next-generation strain sensor. The sensor was consisted of two sections, which are stress concentration section and stress detecting section. This structure can take full advantage of GNR’s properties. Moreover, high quality GNR fabrication process, which is one of the important process in the sensor, was developed by applying CVD (Chemical Vapor Deposition) method. Top-down approach was applied to fabricate the GNR. At first, in order to synthesize a high-quality graphene sheet, acetylene-based LPCVD (low pressure chemical vapor deposition) using a closed Cu foil was employed. After that, graphene was transferred silicon substrate and the quality was evaluated. The high quality graphene was transferred on the soft PDMS substrate and metallic electrodes were fabricated by applying MEMS technology. Area-arrayed fine pin structure was fabricated by using hard PDMS as a stress-concentration section. Finally, both sections were integrated to form a highly sensitive and large deformable pressure sensor. The strain sensitivity of the GNR-base sensor was also evaluated.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In