0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Analysis of Electrostatically Actuated Mechanical Sensor for Graphene

[+] Author Affiliations
Ayse Tekes, Jungkyu Park

Kennesaw State University, Marietta, GA

Paper No. IMECE2018-86407, pp. V010T13A005; 6 pages
doi:10.1115/IMECE2018-86407
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5215-6
  • Copyright © 2018 by ASME

abstract

Very little is known about the fracture behaviors of novel nanomaterials such as carbon nanotubes and graphene due to the difficulty of sample manipulation and in situ detection of their failure mechanism. In the present study, the design and analysis of a Microelectromechanical System (MEMs) device is presented for the tensile testing of single layer graphene. The electrostatically actuated dual parallel plate actuators in the proposed MEMS device enable in situ measurement in a scanning electron microscope by stretching the two ends of a nanostructured sample simultaneously. The elongation in the specimen is obtained by nonlinear finite element analysis using COMSOL, and MATLAB. For the validation of the proposed MEMS device, a lumped model of the system is utilized to analyze the stress-strain behavior of the nanostructured sample under the force generated by the electrodes.

Copyright © 2018 by ASME
Topics: Sensors , Design , Graphene

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In