0

Full Content is available to subscribers

Subscribe/Learn More  >

A Combined CFD-Solid Finite Element Model to Study the Mechanics of Sand Erosion Damage in Coated Glass Fiber Reinforced Polymer

[+] Author Affiliations
Mohamed Tawfik Eraky, Tarek Elmelegy, Mostafa Shazly, N. S. M. Eltayeb

British University in Egypt, Cairo, Egypt

Paper No. IMECE2018-87966, pp. V009T12A052; 11 pages
doi:10.1115/IMECE2018-87966
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures, and Fluids
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5214-9
  • Copyright © 2018 by ASME

abstract

In desert environment, wind turbines blades undergo severe erosion process caused by air-borne sand particles. The erosion damage on blade surface is sensitive to particles velocity, mass flux and impingement angle. The objective of the present work is to get insight into the underlying mechanics of damage evolution by erodent particles in coated Glass Fiber Reinforced Polymer (GFRP) at different impingement angles within the framework of Discrete Element Method and Finite Element (DEM-FE). This paper presents a novel experimental technique to measure sand particles velocity which is then compared to Computational Fluid Dynamics (CFD) simulations based on Eulerian-Eulerian multiphase flow model. The computed sand solid phase velocity and mass flux were used into the DEM-FE analysis to investigate the erosion damage on the coated GFRP surface at multiple impingement angles. Primary findings of CFD show strong dependence between sand particles velocity and its volume fraction. DEM-FE results showed that, the evolution of eroded surface is strongly dependent on the particles impingement angle; in normal impact, the maximum material removal occurs initially, and in oblique impact there is a gradual removal of material along the erosion process.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In