0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Strain States on the Thermal Transport Properties of Single and Multiwalled Carbon Nanostructures

[+] Author Affiliations
Sushan Nakarmi, V. U. Unnikrishnan

University of Alabama, Tuscaloosa, AL

Paper No. IMECE2018-88620, pp. V009T12A043; 6 pages
doi:10.1115/IMECE2018-88620
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures, and Fluids
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5214-9
  • Copyright © 2018 by ASME

abstract

The increasing demand for system miniaturization and high power density energy produces excessive thermal loads on electronic devices with significant mechanical strain. Carbon Nanotubes (CNTs) based devices are found to have excellent thermal transport properties that makes them attractive for thermal management of these miniaturized nano-electronic devices under extreme environments. These conductive nanostructure (carbon nanotubes, graphene, etc.) are often embedded in polymers or other high-strain alloys (the matrix phase), and are used as bridging materials for conductivity (electrical and thermal) with strain resiliency. The effect of strain on the thermal transport properties of these nanostructures have often been overlooked and will be the focus of this work. The thermal conductivity of the nanostructure is obtained in LAMMPS using the Heat-Bath method, which is a reverse non-equilibrium molecular dynamics (RNEMD) simulation strategy. In RNEMD, constant amount of heat is added to and removed from hot and cold regions and the resultant temperature gradient is measured. The effect of strain on the thermal conductivity of the single and multiwalled nanostructures of various configurations will be discussed with specific emphasis on the phonon density of states of nanotubes at different strain states.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In