Full Content is available to subscribers

Subscribe/Learn More  >

An Improved Non-Gaussian Statistical Theory of Rubber Elasticity for Short Chains

[+] Author Affiliations
Vahid Morovati, Roozbeh Dargazany

Michigan State University, East Lansing, MI

Paper No. IMECE2018-88234, pp. V009T12A030; 7 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures, and Fluids
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5214-9
  • Copyright © 2018 by ASME


The mechanical behavior of polymers has long been described by the non-Gaussian statistical model. Non-Gaussian models are generally based on the Kuhn-Grün (KG) distribution function, which itself is derived from the first order approximation of the complex Rayleigh’s exact Fourier integral distribution. The KG function has gained such a broad acceptance in the field of polymer physics that the non-Gaussian theory is often used to describe chains with various flexibility ratios. However, KG function is shown to be only relevant for long chains, with more than 40 segments. Here, we propose a new accurate approximation of the entropic force resulted from Rayleigh distribution function of non-Gaussian chains. The approximation provides an improved version of inverse Langevin function which has a limited error value with respect to the exact entropic force. The proposed function provides a significantly more accurate estimation of the distribution function than KG functions for small and medium-sized chains with less than 40 segments.

Copyright © 2018 by ASME
Topics: Elasticity , Rubber , Chain



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In