Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Non-Pneumatic Tires Based on Helical Hexagonal Cellular Structure

[+] Author Affiliations
Mihir Mangesh Pewekar, Pranit Pravin Sandye, Kiran Chaudhari

Rajiv Gandhi Institute of Technology, Mumbai, India

Paper No. IMECE2018-87631, pp. V009T12A026; 13 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures, and Fluids
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5214-9
  • Copyright © 2018 by ASME


Non-pneumatic tires (NPTs) have drawn attention mainly due to low contact pressure and low rolling resistance due to use of hyper-elastic materials in their construction. In this paper, an attempt to innovate the conventional design of NPT with hexagonal honeycomb cellular structure is made by creating the boundary planar geometries of the tire, skew to each other at a certain angle. Adding to the functionality as a tire, this modified structure increases the performance of automobile components by rejection of heat through convection (forced) at the expense of engine power. The primary investigation includes study of the effects of variation in degree of skewness with the strength and flow of air through the tire. The flow parameters are computed for rotational case and the heat transfer is computed for flow over a brake disk. The secondary investigation consists of finding an optimum range of the degree of skewness. The validation for strength is computed through Finite Element Analysis. The fluid flow is computed through Computational Fluid Dynamics approach in ANSYS Fluent. This modified structure improves the aerodynamic condition near the brake rotor that increases the rate of heat rejection by forced convection from the brake rotor surface.

Copyright © 2018 by ASME
Topics: Tires



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In