0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Performance Analysis of ULTEM 9085 in a Heated, Irradiated Environment

[+] Author Affiliations
Matthew B. Ng, Sean N. Brennan

Pennsylvania State University, University Park, PA

Paper No. IMECE2018-88181, pp. V009T12A020; 6 pages
doi:10.1115/IMECE2018-88181
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures, and Fluids
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5214-9
  • Copyright © 2018 by ASME

abstract

This paper investigates the thermal and radiation performance of 3D-printed ULTEM materials following ASTM standard D638. ULTEM is a thermoplastic in the polyetherimide (PEI) family that is regularly used as a high-grade material for 3D printing. This material has similar properties to polyether ether ketone (PEEK), which is another thermoplastic that has strong mechanical properties at elevated temperature conditions. While PEEK has stronger mechanical properties, ULTEM is significantly more cost efficient to acquire and process via 3D printing. Also, most 3D printers are unable to utilize PEEK because of the significantly higher temperature requirements this material imposes on a 3D printer.

This work is motivated by the need to rapidly deploy robotic inspection systems within a nuclear canister environment, which exposes the material to temperatures up to 170°C (340°F), and radiation levels of 270 Gy/hr (27 krad/hr), which are significantly beyond that of conventional 3D-printed parts. The design analysis was performed via an experiment consisting of three treatment groups of dogbone ULTEM test pieces. After tensile testing all of the pieces, the material properties were compared to those of the control group.

These results allow manufacturers to select a more cost-effective material to build parts to operate in such a harsh high-temperature, high-radiation environment, which could include applications in both space systems and nuclear inspection robotics. Specifically, the results were used to guide the development of a robust robotic inspection system for the Nuclear Energy University Program (NEUP) by replacing complex parts with easily-fabricated 3D-printed ULTEM pieces.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In