0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Characteristic Analysis of Amalgamated Transparent Materials for Armor Structures Using Defeating Ballistic Experimentation

[+] Author Affiliations
Emad Attalla, Badih Jawad, Vernon Fernandez, Sabah Abro, Liping Liu

Lawrence Technological University, Southfield, MI

Steve Grate

AM General LLC, Auburn Hills, MI

Paper No. IMECE2018-86122, pp. V009T12A011; 8 pages
doi:10.1115/IMECE2018-86122
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures, and Fluids
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5214-9
  • Copyright © 2018 by ASME

abstract

In armored platforms industry, the dominant material solution for ballistic transparency protection applications is relatively low-cost polycarbonate matrix glass. This research work aims to investigate the effects of geometrical designs of the amalgamated layers, engineering characteristics of the materials, and the interaction of both on the ballistic resistance of the transparent armor. The resulted models are used to analyze the strength feasibility of the material in the cost base. Ballistic measurements over a wide range of impact velocities including those well above the ballistic limits are deployed to the model. Under simple loading conditions, the polycarbonate matrix glass or ceramic can be regarded as elastic-brittle materials, however, when considering ballistic impacts the post-yield response of the ceramic becomes significant. A post-yield response model of ceramic materials is used for simulating the characteristics. The model incorporates the effect of damage on residual material strength and the resulting bulking during the compressive failure of the ceramic. A combination of relevant factors including the ability to dissipate ballistic energy and manufacturing processes was considered for the proper evaluation and selection of the armor. The model has been implemented into computer software to predict unsuccessful solutions and optimize the amalgamation with capabilities of defeating a wider range of ballistic impacts. The results will show more physical insight of the behavior and performance of the complex armor systems and provide guidelines/principles for the design and selection of the constituent materials.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In