0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of the Effect of Large Deformation Through a Finite Deformation Based Constitutive Model for Metallic Glasses

[+] Author Affiliations
Shank S. Kulkarni

University of North Carolina at Charlotte, Charlotte, NC

Tanmay K. Bhandakkar

Indian Institute of Technology Bombay, Mumbai, India

Paper No. IMECE2018-86063, pp. V009T12A010; 9 pages
doi:10.1115/IMECE2018-86063
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures, and Fluids
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5214-9
  • Copyright © 2018 by ASME

abstract

A thermodynamically consistent constitutive model of metallic glass is presented by extending the infinitesimal deformation model of Huang et al. [Huang, R., Suo, Z., Prevost, J. H., and Nix,W. D., 2002.Inhomogeneous deformation in metallic glasses,J. Mech. Phys. Solids, 40, 1011–1027] to finite deformation. The underlying theory behind the model is the free volume theory with free volume concentration as the order parameter affected through the processes of diffusion, annihilation and creation. The main assumptions of the model include multiplicative decomposition of deformation gradient and additive decomposition of free energy. The former comprises of elastic, inelastic dilatational component associated with excess free volume concentration and isochoric plastic part while the latter consists of contributions from elastic deformation and free volume concentration. The plastic part evolves according to Mises-theory and the local free volume concentration. Homogeneous simple shear is the model problem solved using the present model and compared with the infinitesimal deformation theory to examine the effect of large deformation on stresses in metallic glasses.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In