0

Full Content is available to subscribers

Subscribe/Learn More  >

Spray Evaporative Cooling System Design for Automotive Internal Combustion Engines

[+] Author Affiliations
Jisjoe T. Jose, Julian F. Dunne, Jean-Pierre Pirault, Christopher A. Long

University of Sussex, Falmer, UK

Paper No. ICEF2018-9659, pp. V002T07A008; 10 pages
doi:10.1115/ICEF2018-9659
From:
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5199-9
  • Copyright © 2018 by ASME

abstract

IC engine spray evaporative cooling system design is discussed starting with a review of existing evaporative cooling systems that automotive applications are required to address. A component-level system design is proposed culminating in a simulation model of a PID strategy used to control transient gasside metal temperatures with varying engine load. The model combines a spray evaporation correlation model with 1D finite-difference equations to model the transient heat transfer through a 7 mm thick metal slab which represents the wall of a cylinderhead. Based on the simulation results, the particular changes required of existing engine cooling jacket designs are discussed.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In