0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational Fluid Dynamics Simulation of an Opposed-Piston Two-Stroke Gasoline Compression Ignition Engine

[+] Author Affiliations
Ahmed Abdul Moiz, Janardhan Kodavasal, Sibendu Som

Argonne National Laboratory, Lemont, IL

Reed Hanson, Fabien Redon, Rodrigo Zermeno

Achates Power Inc., San Diego, CA

Paper No. ICEF2018-9713, pp. V002T06A021; 11 pages
doi:10.1115/ICEF2018-9713
From:
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5199-9
  • Copyright © 2018 by ASME

abstract

The paper describes the results from a computational fluid dynamics (CFD) simulation campaign that is complementary to an ongoing experimental program to develop an opposed-piston (OP) two-stroke gasoline compression ignition (GCI) engine for application in light-duty trucks. The simulation workflow and results are explained. First, open-cycle 3-D CFD simulations (in Converge CFD) are performed to simulate the scavenging process—gas exchange through the intake ports, cylinder, and exhaust ports. The results from these scavenging calculations are then fed into a model of this engine built in the system-level simulation tool (in GT-POWER), which in turn provides initial conditions for closed-cycle 3-D CFD simulations. These simulations are used to assess combustion by employing standard spray models and a chemical kinetic mechanism for gasoline. Validation of a representative set of engine operating points is performed in this way to gain confidence in the CFD model setup. Six injectors were then screened according to metrics of wall-wetting, maximum pressure rise rate, combustion efficiency and emission levels. Further CFD simulations have been carried out with parameter sweeps applying design of experiments (DoE) methods to finalize on candidate injectors, piston-bowls and injection strategies. The intended outcome of this program is a three-cylinder OP GCI engine equipped with a turbocharger and a supercharger targeting a 30% improvement in brake thermal efficiency (BTE) over conventional light-duty diesel engines.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In