Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of NO2 Formation Kinetics in Dual-Fuel Engines With Lean Premixed Methane-Air Charge

[+] Author Affiliations
Ehsan Arabian, Thomas Sattelmayer

Technische Universität München, Garching, Germany

Paper No. ICEF2018-9581, pp. V002T06A009; 10 pages
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5199-9
  • Copyright © 2018 by ASME


A dual fuel engine concept with lean premixed methane-air charge ignited by a diesel pilot flame is highly promising for reducing NOx and soot emissions. One drawback of this combustion method, however, is the high nitric dioxide (NO2) emissions observed at certain operating points. NO2 is a toxic gas, which is identifiable by its yellow color.

In this paper the conditions leading to increased NO2 formation have been investigated using a batch reactor model in Cantera. In a first step, it has been found that the high emission levels of NO2 can be traced back to the mixing of small amounts of quenched CH4 with NO from the hot combustion zones followed by post-oxidation in the presence of O2, requiring that the temperatures are within a certain range.

In the second step, NO2 formation in the exhaust duct of a test engine has been modeled and compared to the experimental results. For that purpose a well-stirred reactor model has been used that calculates the steady-state of a uniform composition for a certain residence time. An appropriate reaction mechanism that considers the effect of NO/NO2 on methane oxidation at low temperature levels has been used.

The numerical results of NO to NO2 conversion in the duct at low temperature and pressure levels show good agreement with the experimental results for various temperatures and concentrations of unburned methane. The partial oxidation of CH4 can be predicted well. It can be shown that methane oxidation in the presence of NO/NO2 at low temperature levels is enhanced via the reaction steps CH3 + NO2 ⇌ CH3O + NO and CH3O2 + NO ⇌ CH3O + NO2. In addition the elementary reaction HO2 + NO ⇌ NO2 + OH is the important NO oxidizing step.

Copyright © 2018 by ASME
Topics: Fuels , Engines , Methane



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In