0

Full Content is available to subscribers

Subscribe/Learn More  >

CI Engine Model Predictive Control With Availability Destruction Minimization

[+] Author Affiliations
Muataz Abotabik, Richard T. Meyer

Western Michigan University, Kalamazoo, MI

Paper No. ICEF2018-9673, pp. V001T02A008; 10 pages
doi:10.1115/ICEF2018-9673
From:
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5198-2
  • Copyright © 2018 by ASME

abstract

Major interests in the automotive industry include the use of alternative fuels and reduced fuel usage to address fuel supply security concerns and regulatory requirements. The majority of previous internal combustion engine (ICE) control strategies consider only the First Law of Thermodynamics (FLT). However, FLT is not able to distinguish losses in work potential due to irreversibilities, e.g., up to 25% of fuel exergy may be lost to irreversibilities. To account for these losses, the Second Law of Thermodynamics (SLT) is applicable. The SLT is used to identify the quality of an energy source via availability since not all the energy in a particular energy source is available to produce work; therefore optimal control that includes availability may be another path toward reduced fuel use. Herein, Model Predictive Control (MPC) is developed for both FLT and SLT approaches where fuel consumption is minimized in the former and availability destruction in the latter. Additionally, both include minimization of load tracking error. The controls are evaluated in the simulation of a single cylinder naturally aspirated compression ignition engine that is fueled with either 20% biodiesel and 80% diesel blend or diesel only. Control simulations at a constant engine speed and changing load profile show that the SLT approach results in higher SLT efficiency, reduced specific fuel consumption, and decreased NOx emissions. Further, compared to use of diesel only, use of the biodiesel blend resulted in less SLT efficiency, higher specific fuel consumption, and lower NOx emissions.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In