0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of N-Butanol Content on the Dual-Fuel Combustion Mode With CNG at Two Engine Speeds

[+] Author Affiliations
Xiangyu Meng, Wuqiang Long, Yihui Zhou, Mingshu Bi

Dalian University of Technology, Dalian, China

Chia-Fon F. Lee

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. ICEF2018-9595, pp. V001T02A003; 10 pages
doi:10.1115/ICEF2018-9595
From:
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5198-2
  • Copyright © 2018 by ASME

abstract

Because of the potential to reduce NOx and PM emissions simultaneously and the utilization of biofuel, diesel/compressed natural gas (CNG) dual-fuel combustion mode with port injection of CNG and direct injection of diesel has been widely studied. While in comparison with conventional diesel combustion mode, the dual-fuel combustion mode generally leads lower thermal efficiency, especially at low and medium load, and higher carbon monoxide (CO) and total hydrocarbons (THC) emissions. In this work, n-butanol was blended with diesel as the pilot fuel to explore the possibility to improve the performance and emissions of dual-fuel combustion mode with CNG. Various pilot fuels of B0 (pure diesel), B10 (90% diesel/10% n-butanol by volume basis), B20 (80% diesel/20% n-butanol) and B30 (70% diesel/30% n-butanol) were compared at the CNG substitution rate of 70% by energy basis under the engine speeds of 1400 and 1800 rpm. The experiments were carried out by sweeping a wide range of pilot fuel start of injection timings based on the same total input energy including pilot fuel and CNG. As n-butanol was added into the pilot fuel, the pilot fuel/CNG/air mixture tends to be more homogeneous. The results showed that for the engine speed of 1400 rpm, pilot fuel with n-butanol addition leads to a slightly lower indicated thermal efficiency (ITE). B30 reveals much lower NOx emission and slightly higher THC emissions. For the engine speed of 1800 rpm, B20 can improve ITE and decrease the NOx and THC emissions simultaneously relative to B0.

Copyright © 2018 by ASME
Topics: Combustion , Fuels , Engines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In