Full Content is available to subscribers

Subscribe/Learn More  >

Cyclic Soil Loads on an Offshore Wind Turbine During Storm

[+] Author Affiliations
Shaofeng Wang, Torben J. Larsen

Technical University of Denmark, Roskilde, Denmark

Paper No. IOWTC2018-1075, pp. V001T01A045; 11 pages
  • ASME 2018 1st International Offshore Wind Technical Conference
  • ASME 2018 1st International Offshore Wind Technical Conference
  • San Francisco, California, USA, November 4–7, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5197-5
  • Copyright © 2018 by ASME


Offshore wind turbines are subjected to combined static and cyclic loads due to its self weight, wind, current and waves. For the design of support structures, a point of concern is whether the highly varying loads may cause cyclic degradation of the soil leading to a permanent undesired pile settlement and tilting for the wind turbine. In particular during a severe storm, the large cyclic loads are being more critical as the wind and waves are typically from a single direction. The DTU 10MW wind turbine supported by a jacket at 33 m water depth is considered in this study, where the piles are axially loaded in order to bear the moment under wind and wave actions. This paper investigates the cyclic loads using traditional linear irregular waves and fully nonlinear irregular waves realized from the wave solver Ocean-Wave3D previously validated until near-breaking wave conditions. This study shows that the nonlinear irregular waves introduce more extreme cyclic loads, which result in significantly larger pile settlement than using linear wave realizations. For the case in this study, linear wave theory underestimates pile settlement at least 30% compared to nonlinear wave realizations.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In