Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Seabed Friction Formulations in a Lumped-Mass Mooring Model

[+] Author Affiliations
Kellen Devries, Matthew Hall

University of Prince Edward Island, Charlottetown, PE, Canada

Paper No. IOWTC2018-1099, pp. V001T01A025; 8 pages
  • ASME 2018 1st International Offshore Wind Technical Conference
  • ASME 2018 1st International Offshore Wind Technical Conference
  • San Francisco, California, USA, November 4–7, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5197-5
  • Copyright © 2018 by ASME


This paper explores the impact of friction models on mooring line simulations. Seabed friction can play an important role in the determination of mooring loads of slack-moored floating offshore wind turbines. Most mooring models include a relatively simple seabed friction formulation, if any, and little examination of their accuracy is available in literature. Current implementations typically represent seabed contact as coulombic friction with ramping near zero velocity to mitigate instability in the numerical time integration. To assess the impact of this friction model’s use, we compare it against a more sophisticated friction model. This model differentiates between static and kinetic friction, where the former is dependent upon the forces acting on the line and the latter is a function of seabed’s normal response. Both friction models have been implemented into the MoorDyn mooring dynamics simulator and tested under a set of prescribed scenarios including snap loads and oscillatory motion, where the fairlead of a mooring line was driven along both linear and circular paths. Additionally, coupled floating wind turbine simulations using the OC4-DeepCwind semisubmersible show how the friction models affect the platform global response and the extreme and fatigue mooring loads. The results highlight practical differences between the models in terms of both loads prediction and simulation stability/consistency.

Copyright © 2018 by ASME
Topics: Friction , Mooring , Seabed



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In