Full Content is available to subscribers

Subscribe/Learn More  >

Novel Fine Positioning Method for Hydraulic Drives Utilizing On/Off-Valves

[+] Author Affiliations
Mikko Huova, Matti Linjama, Lauri Siivonen

Tampere University of Technology, Tampere, Finland

Till Deubel, Heino Försterling, Edgar Stamm

Bosch Rexroth AG, Lohr am Main, Germany

Paper No. FPMC2018-8891, pp. V001T01A046; 10 pages
  • BATH/ASME 2018 Symposium on Fluid Power and Motion Control
  • BATH/ASME 2018 Symposium on Fluid Power and Motion Control
  • Bath, UK, September 12–14, 2018
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 978-0-7918-5196-8
  • Copyright © 2018 by ASME


This paper studies a novel on/off-valve-based fine positioning method for hydraulic drives. The method proposed utilizes four on/off-valves in independent metering configuration to reach good positioning accuracy and low power losses. Previously, servo valves have been used in precise position control of hydraulic double acting cylinders. Another approach uses on/off-valves, which are typically driven by using pulse width modulation (PWM) or, if there are parallel connected valves, pulse code modulation (PCM). Typically, both cylinder sides are modulated simultaneously. The new concept proposed uses a cylinder model to calculate a correct opening sequence for the on/off-valves, such that the target piston position is reached. The method proposed modulates single cylinder side at a time in order to achieve small piston position step sizes. Despite relying on the modelled compressibility of the fluid, the method presented requires no knowledge about the bulk modulus of the fluid. It is enough that the bulk modulus of the fluid in both cylinder chambers can be assumed equal. The paper includes the design of the control method, a simulation study proving the validity of the method, and an experimental part investigating the performance in practice. The experimental results show a positioning accuracy of +/− 1 μm with an on/off-valve-based hydraulic drive, the maximum velocity of which is 0.7 m/s.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In