0

Full Content is available to subscribers

Subscribe/Learn More  >

Water Vapour Cavitation in Hydraulic Fluids

[+] Author Affiliations
Filipp Kratschun, Tobias Mielke, Katharina Schmitz

RWTH Aachen University, Aachen, Germany

Paper No. FPMC2018-8872, pp. V001T01A038; 8 pages
doi:10.1115/FPMC2018-8872
From:
  • BATH/ASME 2018 Symposium on Fluid Power and Motion Control
  • BATH/ASME 2018 Symposium on Fluid Power and Motion Control
  • Bath, UK, September 12–14, 2018
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 978-0-7918-5196-8
  • Copyright © 2018 by ASME

abstract

Cavitation in hydraulic systems leads to cavitation erosion which ultimately results in system failure [1, 2] and the reduction of the systems’ stiffness. There are three types of cavitation known: gas, vapour and pseudo cavitation [3].

In previous gas-cavitation studies enormous air release rates in hydraulic fluids have been discovered which could not be explained just by the diffusion of dissolved air through bubble’s boundary. A possible explanation is the simultaneous occurrence of vapour cavitation in conjunction with gas-cavitation. However, this requires drastic pressure drops below several Pa, which is hard to achieve in hydraulic systems.

This article introduces a further hypothesis for the unexplainable air release rates as fourth type of cavitation. Technical fluids can dissolve other fluids, such as water, to a degree which evaporate at much higher pressures compared to the base fluid.

Based on a standard HLP 46 hydraulic oil and water as dissolved fluid, the presented hypothesis is verified. Firstly, a phenomenological mathematical model is developed. Subsequently, a test rig is presented to prove the hypothesis.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In