Full Content is available to subscribers

Subscribe/Learn More  >

High Precision Energy Saving Motion Control of Hydraulic Cylinder Based on Integration of Valves and Pump

[+] Author Affiliations
Litong Lyu, Zheng Chen, Bin Yao

Zhejiang University, Hangzhou, China

Paper No. FPMC2018-8840, pp. V001T01A019; 10 pages
  • BATH/ASME 2018 Symposium on Fluid Power and Motion Control
  • BATH/ASME 2018 Symposium on Fluid Power and Motion Control
  • Bath, UK, September 12–14, 2018
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 978-0-7918-5196-8
  • Copyright © 2018 by ASME


The independent metering approach makes the two chamber pressure states of the hydraulic actuator completely controllable, which offers the opportunity for energy conservation by reducing the working pressure. However, there still remains a great deal of throttling losses since the entire flow rate is throttling controlled with the valves. In order to avoid throttling losses, the direct pump controlled system might be an option, but the relatively slow dynamic response restricts its application in occasions with response and precision demands. To realize further energy conservation and simultaneous high precision tracking performance, this paper proposes a brand new hardware configuration which integrates the direct pump control, independent metering, and energy reuse methods and takes advantages of their respective strengths. The adaptive robust control approach is applied to deal with the nonlinear control problems. Comparative simulations are done with the focuses on energy consumption and tracking performance.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In