0

Full Content is available to subscribers

Subscribe/Learn More  >

Color Changing Actuators: A Review Towards Designing Cyanosis in a Baby Manikin Simulator

[+] Author Affiliations
Nur Fatihah Binti Azmi, Frank Delbressine, Loe Feijs

Eindhoven University of Technology, Eindhoven, Netherlands

Peter Andriessen, Tessa Pols

Máxima Medical Center, Veldhoven, Netherlands

Paper No. SMASIS2018-8248, pp. V002T06A016; 10 pages
doi:10.1115/SMASIS2018-8248
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

This paper reports on the realistic color generation and color change due to cyanosis which refers to the blue coloration around the lips’ area. The design requirements for the manikin were identified based on the color measurement and corrections of cyanosis in images of real babies. The classification of the literature study is according to physics working principles based on energy. A reversible color changing mechanism is achievable by stimuli of external energy such as electric, heat, mechanical, light and magnetic energy. Here, the overview of cyanosis coloration is presented to serve as a basis for a new design of a physiologically-inspired color change actuator for cyanosis in a baby manikin. A state-of-the-art review of color change actuators in the desired color ranges, switching time, dimensions and shape, including the safety issues of each actuating working principle, is presented. Employing a simplified version of the Weighted Objectives method, the practical value of the actuator types was evaluated by assigning scores to each actuator’s type, which indicates their criteria. This work highlights the design’s specifications which aim to design a cyanosis color change actuator in the near future. Ultimately, the envisioned system will increase the efficiency of the visual evaluation and assessment of cyanosis coloration in medical training.

Copyright © 2018 by ASME
Topics: Actuators , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In