Full Content is available to subscribers

Subscribe/Learn More  >

Modular Origami Robot Inspired by a Scorpion Tail

[+] Author Affiliations
Jovana Jovanova, Maja Anachkova, Viktor Gavriloski, Dimitar Petrevski, Franka Grazhdani, Damjan Pecioski

Ss. Cyril and Methodius University, Skopje, Macedonia

Paper No. SMASIS2018-8177, pp. V002T06A014; 8 pages
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME


Arthropod animals like scorpions with modular body parts can be an inspiration for a robot’s structure. The design presented here relays on inter-connected origami towers, but could also be easily disassembled. Each origami tower is fully autonomous and at the same time is part of the robot as a whole. The towers are positioned between two platforms that enable modularity. The scorpion’s tale shape is achieved by the varying platform diameter resulting in cone-like form. Each tower is actuated independently to enable multiple degrees of freedom. Maneuvering with separated units, assists in easier reparation as well as replacement. Detaching the towers into separate parts makes this structure develop more precise movements, since every unit will move autonomously. Therefore, having a higher number of separated movements combined leads to a smooth bionic movement. So, the overall hierarchy will be modular contributing to a greater curvature bending of the whole structure. Actuating and maneuvering the robot in the main concept is done by separated electro motors, built in the platform. The basic structure will be built from thick paper with plastic coatings. The thick paper itself is lightweight, but at the same time flexible. To protect the paper towers, double plastic foil is placed as an outer coating which acts as an origami cover. This transparent layer is elastic hence it can follow and support the individual units’ movements.

This work is focused on understanding origami towers kinematics and different combinations of inter-connected towers to achieve multiple degrees of freedom. A conceptual model is developed, supported by CAD and mathematical models. At the end a prototype is presented.

Copyright © 2018 by ASME
Topics: Robots



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In