0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of the Interface of Functionally Graded Superelastic Zones in Compliant Deployable Structures

[+] Author Affiliations
Jovana Jovanova, Simona Domazetovska

Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia

Mary Frecker

Pennsylvania State University, University Park, PA

Paper No. SMASIS2018-8176, pp. V002T06A013; 8 pages
doi:10.1115/SMASIS2018-8176
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

Functionally graded compliant mechanisms can be fabricated with additive manufacturing technology by engineering the microstructural and compositional gradients at selected locations resulting in compositionally graded zones of higher and lower flexibility. The local compliance depends on the geometry of the structure as well as the material property in the selected region. As Nitinol (NiTi) is well suited for applications requiring compliance, the critical transformation stress and the superelastic modulus of elasticity are crucial parameters for defining the local compliance. To understand the behavior at the interface between two different material compositions, three models of gradient change between the alloys are analyzed: step change, linear and polynomial gradients. In addition to localize the deformation in the interface, three different flexure designs in the interface are analyzed. This paper will address a methodology for modeling and parametrization of material properties and transition at the interface, for different flexure designs. The combined effort in the interface of the functional grading and the geometry will be used for the design of monolithic self-deployable structures, initially folded in compact shape. The design motivation comes from the self-deploying mechanisms inspired by insects’ wings.

Copyright © 2018 by ASME
Topics: Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In