0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrospun PVDF Miniaturized Muscles for Bio Inspired Morphing Materials

[+] Author Affiliations
Krishna Chytanya Chinnam, Federico Fabriani, Iucci Giovanna, Giulia Lanzara

Roma Tre University, Rome, Italy

Paper No. SMASIS2018-8054, pp. V002T06A006; 7 pages
doi:10.1115/SMASIS2018-8054
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

Several biological creatures represent a great inspiration for the realization of advanced morphing materials. For instance, bat wing is extremely interesting because of its unique ability of drastically changing shape and size thanks to an embedded distributed array of ultra-small-in-size muscles. This is obviously done as a response to continuously detected external stimuli. Novel ultra-lightweight and non-invasive artificial muscles that can exploit a dual functionality and that can be integrated into hosting materials, are here investigated. The muscles are made of a piezoelectric (PVDF) single micro-fibre and a micro-fibre rope created using a simple electrospinning technique. The advantage of this technique is the less-complex in-situ fibres poling during electrospinning which makes them an attractive alternative compared to thin PVDF films that require an additional complicated poling step to achieve their piezoelectric properties. Muscles that possess an active and passive electromechanical response based on a ∼ 3-micron thick single PVDF fibre and ∼ 150-micron thick PVDF fibred rope, were realized. Preliminary results prove that these PVDF fibres have a highly accurate electromechanical response over an extremely wide frequency range. Fully constrained single fibres and fibre ropes, when actuated with the corresponding electric fields, show a midpoint displacement of ∼ 36 μm.

Copyright © 2018 by ASME
Topics: Biomimetics , Muscle

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In