Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication Considerations for Bridged Microfluidic Cell Cultures

[+] Author Affiliations
Rosalind Wynne, Sabrina Ahmed

Villanova University, Villanova, PA

Paper No. SMASIS2018-7983, pp. V002T06A002; 6 pages
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME


A novel bridged-microfluidic for cell-based assays was developed by combining a microstructured optical fiber (MOF) with a microfluidic network with the purpose of continuously monitoring the state of hepatocellular carcinoma (HepG2) cells. In this configuration a solid core MOF with channels in the cladding serves as a bridge for cell transport as well as an evanescent wave-based monitoring system to detect cells labeled with fluorescent nanomaterials. The device was fabricated by positioning an MOF to bridge two polydimethylsiloxane (PDMS) microfluidic networks. Alignment strategies and pressurization considerations to produce this system are presented. Pump systems that support fluid transport through the MOF demonstrated the tendency of flow rate fluctuations even for constant microfluidic pump rates. Spectroscopic measurements confirm the delivery and motion of cells between the two neighboring microfluidic chips. The linewidth of the spectra demonstrated oscillations that were consistent with pressure broadening caused by hydrodynamic fluctuations. Fluctuations in the microfluidic flow ranging from 0.005 to 0.016 Hz were observed. These results are consistent with theoretical principles and provide important information regarding syringe pump artifacts, i.e. fluctuations, observed during spectroscopic measurements in MOF/microfluidic systems.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In