0

Full Content is available to subscribers

Subscribe/Learn More  >

Shuttered Passive Infrared Sensor for Occupancy Detection: Exploring a Low Power Electro-Mechanical Driving Approach

[+] Author Affiliations
Libo Wu, Ya Wang

Texas A&M University, College Station, TX

Paper No. SMASIS2018-8112, pp. V002T05A010; 12 pages
doi:10.1115/SMASIS2018-8112
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

Passive infrared (PIR) sensors are the most popular deployed sensors in building lighting control for individual presence detection. However, PIR sensors are motion detectors in nature, responding only to incident radiation variation, which lead to false negative detections, inaccurate occupancy estimation, and uncomfortable lighting swings, short lifetime of the equipment, and waste of energy. In this study, a shutter driven by a Lavet motor PIR (LAMPIR) sensor is developed for presence detection for both stationary and moving occupants. Building off our previous work on chopped PIR (C-PIR) and rotationally-chopped PIR (Ro-PIR) sensors, Lavet motor, a single-phase electro-mechanical vibrator, is introduced, which has many advantages over traditional servo motors and stepper motors in terms of power consumption, size, weight and noise level. Driven by pulsed signal from a microcontroller unit (MCU), the electro-mechanical vibrator drives a semi-transparent long-wave infrared (LWIR) optical shutter to shutter the field of view (FOV) of a PIR sensor periodically. Output voltage generated by a LAMPIR senor for occupied and unoccupied scenarios can be monitored and analyzed to identify presence accurately. Parametric studies are conducted to find the optimal setting of driving signal frequency, shutter width and shuttering period. The LAMPIR sensor reaches an accuracy of 100% for detecting stationary occupants up to a range of 4.5 m and moving occupants up to a range of 10 m, which improves the detection range of both C-PIR and Ro-PIR sensors (4.0 m for stationary and 8.0 m for moving occupancy detection). LAMPIR has a FOV of 90° in horizontal and 100° in vertical, which is reasonable for most applications. For a 17-hour-long presence detection test, LAMPIR can reach an accuracy of 93.52% to classify unoccupied, stationary and moving occupant scenarios. More importantly, the average power consumption of LAMPIR is 0.19 W, which is 82% less than that of the C-PIR sensor and 89% less than that of the Ro-PIR sensor.

Copyright © 2018 by ASME
Topics: Sensors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In