0

Full Content is available to subscribers

Subscribe/Learn More  >

Damage Detection in Nanofiller-Modified Composites With External Circuitry via Resonant Frequency Shifts

[+] Author Affiliations
T. N. Tallman

Purdue University, West Lafayette, IN

Paper No. SMASIS2018-8008, pp. V002T05A007; 6 pages
doi:10.1115/SMASIS2018-8008
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

Conductive nanofiller-modified composites have received a lot of attention from the structural health monitoring (SHM) research community in recent years because these materials are piezoresistive (i.e. they have deformation and damage-dependent electrical conductivity) and are therefore self-sensing. To date, the vast majority of work in this area has utilized direct current (DC) interrogation to identify and/or localize damage. While this approach has been met with much success, it is also well known that nanofiller-modified composites possess frequency-dependent electrical behavior. This behavior can be roughly modeled as a parallel resistor-capacitor circuit. However, much less work has been done to explore the potential this frequency-dependent behavior for damage detection. To this end, the work herein presented covers some preliminary results which leverage high-frequency electrical interrogation for damage detection. More specifically, carbon nanofiber (CNF)/epoxy specimens are produced and connected to an external inductor in both series and parallel configurations. Because the CNF/epoxy electrically behaves like a resistor-capacitor circuit, the inclusion of an inductor enables electrical resonance to be achieved. Changes in resonant frequency are then used for rudimentary damage detection. These preliminary results indicate that the potential of SHM via the piezoresistive effect in nanofiller-modified composites can be considerably expanded by leveraging alternating current (AC) interrogation and resonant frequency principles.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In