0

Full Content is available to subscribers

Subscribe/Learn More  >

Distributed Strain Sensing Using Carbon Nanotube Thin Films and Electrical Time-Domain Reflectometry

[+] Author Affiliations
Bo Mi Lee, Kenneth J. Loh, Francesco Lanza di Scalea

University of California-San Diego, La Jolla, CA

Paper No. SMASIS2018-7997, pp. V002T05A006; 8 pages
doi:10.1115/SMASIS2018-7997
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

Nondestructive inspection (NDI) is an effective technique to inspect, test, or evaluate the integrity of materials, components, and structures without interrupting the serviceability of a system. Despite recent advances in NDI techniques, most of them are either limited to sensing structural response at their instrumented locations or require multiple sensors and measurements to localize damage. In this study, a new NDI system that could achieve distributed sensing using a single measurement was investigated. Here, piezoresistive carbon nanotube (CNT)-polymer thin film sensors connected in a transmission line setup were interrogated using electrical time-domain reflectometry (ETDR). In ETDR, an electromagnetic signal is sent from one end of the transmission line. When the signal encounters the sensor, it can partially reflect and be captured at the same point. The characteristics of the reflected signal depend on the sensor’s impedance, which is correlated to structural response, deformation, or damage. The advantage of this is that distributed sensing along the entire transmission line can be achieved using a single measurement point. To validate this concept, CNT-polymer thin films that were integrated with a transmission line are subjected to uniaxial tensile strains applied using a load frame. The ETDR signals were analyzed to assess the system’s sensing performance.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In