0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Rheological Model of Magnetorheological Fluids for CFD: Comparison and Validation

[+] Author Affiliations
Muaz Kemerli, Tahsin Engin, Zekeriya Parlak

Sakarya University, Sakarya, Turkey

Paper No. SMASIS2018-7984, pp. V002T02A003; 6 pages
doi:10.1115/SMASIS2018-7984
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

Magnetorheological fluid is a special smart fluid which can show different rheological properties under different magnetic flux densities due to its magnetically sensitive structure. This makes the fluid able to be manipulated and semi-actively controlled for various applications such as dampers, clutches and brakes. To provide an effective damping it is necessary to create an appropriate control algorithm. In order to design a structure with magnetorheological fluid and to get an idea for a control approach, the physics of the fluid motion has to be modelled. Computational Fluid Dynamics is an effective tool to model any fluid behaviour or any fluid involved structure. For magnetorheological devices, despite number of numerical models available in the literature, a befitting model is not yet presented. In this study a mapped rheological model is proposed and used in a magnetorheological damper simulation. The results are compared with other models and experimental data. It is shown that the new mapped model is effective and better than old approaches. It also showed a good agreement with the experimental data.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In